On asymptotic properties of solutions to third-order delay differential equations

The purpose of the paper is to show that the canonical operator $L_3$ given by $$L_3(\cdot) = \left(r_2\left(r_1(\cdot)'\right)'\right)'$$ where the functions $r_i(t)\in \mathcal{C}([t_0,\infty), [0,\infty))$ satisfy \[ \int_{t_0}^{\infty}\frac{\mathrm{d} s}{r_i(s)} = \infty, \quad...

Full description

Bibliographic Details
Main Authors: Jozef Džurina, Irena Jadlovská, Blanka Baculíková
Format: Article
Language:English
Published: University of Szeged 2019-02-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7117