On asymptotic properties of solutions to third-order delay differential equations
The purpose of the paper is to show that the canonical operator $L_3$ given by $$L_3(\cdot) = \left(r_2\left(r_1(\cdot)'\right)'\right)'$$ where the functions $r_i(t)\in \mathcal{C}([t_0,\infty), [0,\infty))$ satisfy \[ \int_{t_0}^{\infty}\frac{\mathrm{d} s}{r_i(s)} = \infty, \quad...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2019-02-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=7117 |