Retinal Fluid Segmentation Using Ensembled 2-Dimensionally and 2.5-Dimensionally Deep Learning Networks
Morphological changes related to different diseases that occur in the retina are currently extensively researched. Manual segmentation of retinal fluids is time-consuming and subject to variability, giving prominence to the demand for robust automatic segmentation methods. The standard in assessing...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9170512/ |