Commutation Error Compensation Strategy for Sensorless Brushless DC Motors

Sensorless brushless DC (BLDC) motor drive systems often suffer from inaccurate commutation signals, which result in current fluctuation and high conduction loss. To improve precision of commutation signals, this paper presents a novel commutation error compensation strategy for BLDC motors. First,...

Full description

Bibliographic Details
Main Authors: Xuliang Yao, Jicheng Zhao, Guangxu Lu, Hao Lin, Jingfang Wang
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/12/2/203
Description
Summary:Sensorless brushless DC (BLDC) motor drive systems often suffer from inaccurate commutation signals, which result in current fluctuation and high conduction loss. To improve precision of commutation signals, this paper presents a novel commutation error compensation strategy for BLDC motors. First, the relationship between the line voltage difference integral in 60 electrical degree conduction interval and the commutation error is analyzed. Then, in terms of the relationship derived, a feedback compensation strategy based on the line voltage difference integral is proposed to regulate commutation signals by making three-phase back electromotive force (EMF) integral to zero, and the effect of the freewheeling process on the line voltage difference integral is considered. Moreover, an incremental PI controller is designed to achieve closed-loop compensation for the commutation error automatically. Finally, experiment results verify feasibility and effectiveness of the proposed strategy.
ISSN:1996-1073