A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities

This paper introduces a strategy for the path planning problem for platforms with limited sensor and processing capabilities. The proposed algorithm does not require any prior information but assumes that a mapping algorithm is used. If enough information is available, a global path planner finds su...

Full description

Bibliographic Details
Main Authors: Guilherme Carlos R. de Oliveira, Kevin B. de Carvalho, Alexandre S. Brandão
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/19/5/1049
id doaj-d19fafd90a964d3588d35d9e3fdaa930
record_format Article
spelling doaj-d19fafd90a964d3588d35d9e3fdaa9302020-11-25T02:12:56ZengMDPI AGSensors1424-82202019-03-01195104910.3390/s19051049s19051049A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor CapabilitiesGuilherme Carlos R. de Oliveira0Kevin B. de Carvalho1Alexandre S. Brandão2Núcleo de Especialização em Robótica—NERO, Departamento de Engenharia Elétrica—DEL, Universidade Federal de Viçosa—UFV, Viçosa MG 36570-900, BrazilNúcleo de Especialização em Robótica—NERO, Departamento de Engenharia Elétrica—DEL, Universidade Federal de Viçosa—UFV, Viçosa MG 36570-900, BrazilNúcleo de Especialização em Robótica—NERO, Departamento de Engenharia Elétrica—DEL, Universidade Federal de Viçosa—UFV, Viçosa MG 36570-900, BrazilThis paper introduces a strategy for the path planning problem for platforms with limited sensor and processing capabilities. The proposed algorithm does not require any prior information but assumes that a mapping algorithm is used. If enough information is available, a global path planner finds sub-optimal collision-free paths within the known map. For the real time obstacle avoidance task, a simple and cost-efficient local planner is used, making the algorithm a hybrid global and local planning solution. The strategy was tested in a real, cluttered environment experiment using the Pioneer P3-DX and the Xbox 360 kinect sensor, to validate and evaluate the algorithm efficiency.http://www.mdpi.com/1424-8220/19/5/1049path planningglobal and local plannerhybrid strategyA* searchtangential escape
collection DOAJ
language English
format Article
sources DOAJ
author Guilherme Carlos R. de Oliveira
Kevin B. de Carvalho
Alexandre S. Brandão
spellingShingle Guilherme Carlos R. de Oliveira
Kevin B. de Carvalho
Alexandre S. Brandão
A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities
Sensors
path planning
global and local planner
hybrid strategy
A* search
tangential escape
author_facet Guilherme Carlos R. de Oliveira
Kevin B. de Carvalho
Alexandre S. Brandão
author_sort Guilherme Carlos R. de Oliveira
title A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities
title_short A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities
title_full A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities
title_fullStr A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities
title_full_unstemmed A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities
title_sort hybrid path-planning strategy for mobile robots with limited sensor capabilities
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2019-03-01
description This paper introduces a strategy for the path planning problem for platforms with limited sensor and processing capabilities. The proposed algorithm does not require any prior information but assumes that a mapping algorithm is used. If enough information is available, a global path planner finds sub-optimal collision-free paths within the known map. For the real time obstacle avoidance task, a simple and cost-efficient local planner is used, making the algorithm a hybrid global and local planning solution. The strategy was tested in a real, cluttered environment experiment using the Pioneer P3-DX and the Xbox 360 kinect sensor, to validate and evaluate the algorithm efficiency.
topic path planning
global and local planner
hybrid strategy
A* search
tangential escape
url http://www.mdpi.com/1424-8220/19/5/1049
work_keys_str_mv AT guilhermecarlosrdeoliveira ahybridpathplanningstrategyformobilerobotswithlimitedsensorcapabilities
AT kevinbdecarvalho ahybridpathplanningstrategyformobilerobotswithlimitedsensorcapabilities
AT alexandresbrandao ahybridpathplanningstrategyformobilerobotswithlimitedsensorcapabilities
AT guilhermecarlosrdeoliveira hybridpathplanningstrategyformobilerobotswithlimitedsensorcapabilities
AT kevinbdecarvalho hybridpathplanningstrategyformobilerobotswithlimitedsensorcapabilities
AT alexandresbrandao hybridpathplanningstrategyformobilerobotswithlimitedsensorcapabilities
_version_ 1724907406215872512