Precision of laboratory methods based on protein solubility in quality control of heat treated feedstuffs

Some of feedstuffs used as raw materials in feed industry contain anti-nutritional factors that negatively influence their quality. One of them is soybean, which is, prior to oil extraction, referred to as full-fat soybean (FFSB). Anti-nutritional factors in raw FFSB can be destroyed by moderate...

Full description

Bibliographic Details
Main Authors: Palić Dragan V., Morey Liesl, Modika Kedibone Y., Kokić Bojana M., Đuragić Olivera M., Spasevski Nedeljka J.
Format: Article
Language:English
Published: Association of Chemical Engineers of Serbia 2012-01-01
Series:Hemijska Industrija
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0367-598X/2012/0367-598X1100054P.pdf
Description
Summary:Some of feedstuffs used as raw materials in feed industry contain anti-nutritional factors that negatively influence their quality. One of them is soybean, which is, prior to oil extraction, referred to as full-fat soybean (FFSB). Anti-nutritional factors in raw FFSB can be destroyed by moderate heating, but both over- and under heat processing limits the availability of soybean amino acids. Among laboratory procedures that are available for assessing the degree of FFSB heat treatment, two methods, i.e. Protein dispersibility index (PDI) and protein solubility in potassium hydroxide (PSKOH), are based on protein solubility, which was claimed to be the most reliable indicator of the degree of FFSB heat treatment. This paper presents the results of an inter-laboratory study conducted to establish precision of the PDI and PSKOH methods by determining their reproducibility limits. Five samples of FFSB were heat-treated at temperatures between 110 and 164 °C and analyzed by six laboratories for PDI and PSKOH. Established reproducibility limit for PDI method of 8.87 index units found in this study appeared to be too wide, indicating a low precision of this method. PSKOH method produced very good reproducibility limit of 8.56% and could be recommended as a preferred method for FFSB quality control in feed laboratories.
ISSN:0367-598X