Finite-Time Tracking Control for a Class of MIMO Nonlinear Systems with Unknown Asymmetric Saturations

This paper addresses the problem of finite-time tracking control for multiple-input and multiple-output (MIMO) nonlinear systems with asymmetric saturations. A systematic approach is proposed to eliminate the effects of unmeasured external disturbances and unknown asymmetric saturations. In the prop...

Full description

Bibliographic Details
Main Authors: Fu Mingyu, Xu Yujie
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2017/9452171
Description
Summary:This paper addresses the problem of finite-time tracking control for multiple-input and multiple-output (MIMO) nonlinear systems with asymmetric saturations. A systematic approach is proposed to eliminate the effects of unmeasured external disturbances and unknown asymmetric saturations. In the proposed control strategy, a terminal sliding mode disturbance observer is provided to estimate the augmented disturbance (which contains the unknown asymmetric input saturation and external disturbance). The approximation error of the augmented disturbance can converge to zero in a fixed finite-time interval. Furthermore, a novel finite-time tracking control algorithm is developed to guarantee fast convergence of the tracking error. Compared with the existing results on finite-time tracking control, the chattering problem and the input saturation problem can be solved in a unified framework. Several simulations are given to demonstrate the effectiveness of the proposed approach.
ISSN:1024-123X
1563-5147