Active Learning on Dynamic Clustering for Drift Compensation in an Electronic Nose System
Drift correction is an important concern in Electronic noses (E-nose) for maintaining stable performance during continuous work. A large number of reports have been presented for dealing with E-nose drift through machine-learning approaches in the laboratory. In this study, we aim to counter the dri...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/19/16/3601 |