Asymmetric synthesis of γ-branched amines via rhodium-catalyzed reductive amination
Biologically active compounds often contain a chiral centre in proximity of amine groups. Here, the authors developed a strategy involving asymmetric isomerization of allylic amines, enamine exchange and chemoselective reduction for the one-pot highly enantioselective synthesis of gamma-branched ami...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-03535-y |