Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis.
The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host prot...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3958395?pdf=render |
id |
doaj-cf4ea13e757e47edba3925b4e411ce05 |
---|---|
record_format |
Article |
spelling |
doaj-cf4ea13e757e47edba3925b4e411ce052020-11-25T01:09:29ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0193e9170610.1371/journal.pone.0091706Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis.Sabine A LauerSrinivas IyerTimothy SanchezChristian V ForstBrent BowdenKay CarlsonNammalwar SriranganathanStephen M BoyleThe plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide the basis for novel ways of treating or diagnosing Brucellosis.http://europepmc.org/articles/PMC3958395?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sabine A Lauer Srinivas Iyer Timothy Sanchez Christian V Forst Brent Bowden Kay Carlson Nammalwar Sriranganathan Stephen M Boyle |
spellingShingle |
Sabine A Lauer Srinivas Iyer Timothy Sanchez Christian V Forst Brent Bowden Kay Carlson Nammalwar Sriranganathan Stephen M Boyle Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. PLoS ONE |
author_facet |
Sabine A Lauer Srinivas Iyer Timothy Sanchez Christian V Forst Brent Bowden Kay Carlson Nammalwar Sriranganathan Stephen M Boyle |
author_sort |
Sabine A Lauer |
title |
Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. |
title_short |
Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. |
title_full |
Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. |
title_fullStr |
Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. |
title_full_unstemmed |
Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. |
title_sort |
proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth brucella melitensis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide the basis for novel ways of treating or diagnosing Brucellosis. |
url |
http://europepmc.org/articles/PMC3958395?pdf=render |
work_keys_str_mv |
AT sabinealauer proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis AT srinivasiyer proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis AT timothysanchez proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis AT christianvforst proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis AT brentbowden proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis AT kaycarlson proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis AT nammalwarsriranganathan proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis AT stephenmboyle proteomicanalysisofdetergentresistantmembranedomainsduringearlyinteractionofmacrophageswithroughandsmoothbrucellamelitensis |
_version_ |
1725178405354209280 |