Existence of periodic solutions of pendulum-like ordinary and functional differential equations
The equation \[x''(t)=a(t,x(t))+b(t,x)+d(t,x)e(x'(t))\] is considered, where $a:\mathbb{R}^2\to\mathbb{R}$, $b,d:\mathbb{R}\times C(\mathbb{R},\mathbb{R})\to\mathbb{R}$, $e:\mathbb{R}\to\mathbb{R}$ are continuous, and $a,b,d$ are $T$-periodic with respect to $t$. Using the Leray–Schau...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2020-12-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8945 |
id |
doaj-ccf79fb3a266486f899b06b12fbb246f |
---|---|
record_format |
Article |
spelling |
doaj-ccf79fb3a266486f899b06b12fbb246f2021-07-14T07:21:34ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752020-12-0120208011010.14232/ejqtde.2020.1.808945Existence of periodic solutions of pendulum-like ordinary and functional differential equationsLászló Hatvani0Bolyai Institute, University of Szeged, Szeged, HungaryThe equation \[x''(t)=a(t,x(t))+b(t,x)+d(t,x)e(x'(t))\] is considered, where $a:\mathbb{R}^2\to\mathbb{R}$, $b,d:\mathbb{R}\times C(\mathbb{R},\mathbb{R})\to\mathbb{R}$, $e:\mathbb{R}\to\mathbb{R}$ are continuous, and $a,b,d$ are $T$-periodic with respect to $t$. Using the Leray–Schauder degree theory we prove that a sign condition, in which $a$ dominates $b$, is sufficient for the existence of a $T$-periodic solution. The main theorem is applied to the equation of the forced damped pendulum.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8945leray–schauder degreeforced damped pendulum |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
László Hatvani |
spellingShingle |
László Hatvani Existence of periodic solutions of pendulum-like ordinary and functional differential equations Electronic Journal of Qualitative Theory of Differential Equations leray–schauder degree forced damped pendulum |
author_facet |
László Hatvani |
author_sort |
László Hatvani |
title |
Existence of periodic solutions of pendulum-like ordinary and functional differential equations |
title_short |
Existence of periodic solutions of pendulum-like ordinary and functional differential equations |
title_full |
Existence of periodic solutions of pendulum-like ordinary and functional differential equations |
title_fullStr |
Existence of periodic solutions of pendulum-like ordinary and functional differential equations |
title_full_unstemmed |
Existence of periodic solutions of pendulum-like ordinary and functional differential equations |
title_sort |
existence of periodic solutions of pendulum-like ordinary and functional differential equations |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2020-12-01 |
description |
The equation
\[x''(t)=a(t,x(t))+b(t,x)+d(t,x)e(x'(t))\]
is considered, where $a:\mathbb{R}^2\to\mathbb{R}$, $b,d:\mathbb{R}\times C(\mathbb{R},\mathbb{R})\to\mathbb{R}$, $e:\mathbb{R}\to\mathbb{R}$ are continuous, and $a,b,d$ are $T$-periodic with respect to $t$. Using the Leray–Schauder degree theory we prove that a sign condition, in which $a$ dominates $b$, is sufficient for the existence of a $T$-periodic solution. The main theorem is applied to the equation of the forced damped pendulum. |
topic |
leray–schauder degree forced damped pendulum |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8945 |
work_keys_str_mv |
AT laszlohatvani existenceofperiodicsolutionsofpendulumlikeordinaryandfunctionaldifferentialequations |
_version_ |
1721303401149497344 |