Existence of periodic solutions of pendulum-like ordinary and functional differential equations

The equation \[x''(t)=a(t,x(t))+b(t,x)+d(t,x)e(x'(t))\] is considered, where $a:\mathbb{R}^2\to\mathbb{R}$, $b,d:\mathbb{R}\times C(\mathbb{R},\mathbb{R})\to\mathbb{R}$, $e:\mathbb{R}\to\mathbb{R}$ are continuous, and $a,b,d$ are $T$-periodic with respect to $t$. Using the Leray–Schau...

Full description

Bibliographic Details
Main Author: László Hatvani
Format: Article
Language:English
Published: University of Szeged 2020-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8945
id doaj-ccf79fb3a266486f899b06b12fbb246f
record_format Article
spelling doaj-ccf79fb3a266486f899b06b12fbb246f2021-07-14T07:21:34ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752020-12-0120208011010.14232/ejqtde.2020.1.808945Existence of periodic solutions of pendulum-like ordinary and functional differential equationsLászló Hatvani0Bolyai Institute, University of Szeged, Szeged, HungaryThe equation \[x''(t)=a(t,x(t))+b(t,x)+d(t,x)e(x'(t))\] is considered, where $a:\mathbb{R}^2\to\mathbb{R}$, $b,d:\mathbb{R}\times C(\mathbb{R},\mathbb{R})\to\mathbb{R}$, $e:\mathbb{R}\to\mathbb{R}$ are continuous, and $a,b,d$ are $T$-periodic with respect to $t$. Using the Leray–Schauder degree theory we prove that a sign condition, in which $a$ dominates $b$, is sufficient for the existence of a $T$-periodic solution. The main theorem is applied to the equation of the forced damped pendulum.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8945leray–schauder degreeforced damped pendulum
collection DOAJ
language English
format Article
sources DOAJ
author László Hatvani
spellingShingle László Hatvani
Existence of periodic solutions of pendulum-like ordinary and functional differential equations
Electronic Journal of Qualitative Theory of Differential Equations
leray–schauder degree
forced damped pendulum
author_facet László Hatvani
author_sort László Hatvani
title Existence of periodic solutions of pendulum-like ordinary and functional differential equations
title_short Existence of periodic solutions of pendulum-like ordinary and functional differential equations
title_full Existence of periodic solutions of pendulum-like ordinary and functional differential equations
title_fullStr Existence of periodic solutions of pendulum-like ordinary and functional differential equations
title_full_unstemmed Existence of periodic solutions of pendulum-like ordinary and functional differential equations
title_sort existence of periodic solutions of pendulum-like ordinary and functional differential equations
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2020-12-01
description The equation \[x''(t)=a(t,x(t))+b(t,x)+d(t,x)e(x'(t))\] is considered, where $a:\mathbb{R}^2\to\mathbb{R}$, $b,d:\mathbb{R}\times C(\mathbb{R},\mathbb{R})\to\mathbb{R}$, $e:\mathbb{R}\to\mathbb{R}$ are continuous, and $a,b,d$ are $T$-periodic with respect to $t$. Using the Leray–Schauder degree theory we prove that a sign condition, in which $a$ dominates $b$, is sufficient for the existence of a $T$-periodic solution. The main theorem is applied to the equation of the forced damped pendulum.
topic leray–schauder degree
forced damped pendulum
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8945
work_keys_str_mv AT laszlohatvani existenceofperiodicsolutionsofpendulumlikeordinaryandfunctionaldifferentialequations
_version_ 1721303401149497344