Existence of periodic solutions of pendulum-like ordinary and functional differential equations
The equation \[x''(t)=a(t,x(t))+b(t,x)+d(t,x)e(x'(t))\] is considered, where $a:\mathbb{R}^2\to\mathbb{R}$, $b,d:\mathbb{R}\times C(\mathbb{R},\mathbb{R})\to\mathbb{R}$, $e:\mathbb{R}\to\mathbb{R}$ are continuous, and $a,b,d$ are $T$-periodic with respect to $t$. Using the Leray–Schau...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2020-12-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8945 |