A new theorem on exponential stability of periodic evolution families on Banach spaces

We consider a mild solution $v_f(cdot, 0)$ of a well-posed inhomogeneous Cauchy problem $dot v(t)=A(t)v(t)+f(t)$, $v(0)=0$ on a complex Banach space $X$, where $A(cdot)$ is a 1-periodic operator-valued function. We prove that if $v_f(cdot, 0)$ belongs to $AP_0(mathbb{R}_+, X)$ for each $fin AP_0(mat...

Full description

Bibliographic Details
Main Authors: Constantin Buse, Oprea Jitianu
Format: Article
Language:English
Published: Texas State University 2003-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2003/14/abstr.html
id doaj-ccdf1664c93b4bd8aa7a5bc102a0cd44
record_format Article
spelling doaj-ccdf1664c93b4bd8aa7a5bc102a0cd442020-11-24T23:52:17ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912003-02-01200314110A new theorem on exponential stability of periodic evolution families on Banach spacesConstantin BuseOprea JitianuWe consider a mild solution $v_f(cdot, 0)$ of a well-posed inhomogeneous Cauchy problem $dot v(t)=A(t)v(t)+f(t)$, $v(0)=0$ on a complex Banach space $X$, where $A(cdot)$ is a 1-periodic operator-valued function. We prove that if $v_f(cdot, 0)$ belongs to $AP_0(mathbb{R}_+, X)$ for each $fin AP_0(mathbb{R}_+, X)$ then for each $xin X$ the solution of the well-posed Cauchy problem $dot u(t)=A(t)v(t)$, $u(0)=x$ is uniformly exponentially stable. The converse statement is also true. Details about the space $AP_0(mathbb{R}_+, X)$ are given in the section 1, below. Our approach is based on the spectral theory of evolution semigroups. http://ejde.math.txstate.edu/Volumes/2003/14/abstr.htmlAlmost periodic functionsexponential stabilityperiodic evolution families of operatorsintegral inequality
collection DOAJ
language English
format Article
sources DOAJ
author Constantin Buse
Oprea Jitianu
spellingShingle Constantin Buse
Oprea Jitianu
A new theorem on exponential stability of periodic evolution families on Banach spaces
Electronic Journal of Differential Equations
Almost periodic functions
exponential stability
periodic evolution families of operators
integral inequality
author_facet Constantin Buse
Oprea Jitianu
author_sort Constantin Buse
title A new theorem on exponential stability of periodic evolution families on Banach spaces
title_short A new theorem on exponential stability of periodic evolution families on Banach spaces
title_full A new theorem on exponential stability of periodic evolution families on Banach spaces
title_fullStr A new theorem on exponential stability of periodic evolution families on Banach spaces
title_full_unstemmed A new theorem on exponential stability of periodic evolution families on Banach spaces
title_sort new theorem on exponential stability of periodic evolution families on banach spaces
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2003-02-01
description We consider a mild solution $v_f(cdot, 0)$ of a well-posed inhomogeneous Cauchy problem $dot v(t)=A(t)v(t)+f(t)$, $v(0)=0$ on a complex Banach space $X$, where $A(cdot)$ is a 1-periodic operator-valued function. We prove that if $v_f(cdot, 0)$ belongs to $AP_0(mathbb{R}_+, X)$ for each $fin AP_0(mathbb{R}_+, X)$ then for each $xin X$ the solution of the well-posed Cauchy problem $dot u(t)=A(t)v(t)$, $u(0)=x$ is uniformly exponentially stable. The converse statement is also true. Details about the space $AP_0(mathbb{R}_+, X)$ are given in the section 1, below. Our approach is based on the spectral theory of evolution semigroups.
topic Almost periodic functions
exponential stability
periodic evolution families of operators
integral inequality
url http://ejde.math.txstate.edu/Volumes/2003/14/abstr.html
work_keys_str_mv AT constantinbuse anewtheoremonexponentialstabilityofperiodicevolutionfamiliesonbanachspaces
AT opreajitianu anewtheoremonexponentialstabilityofperiodicevolutionfamiliesonbanachspaces
AT constantinbuse newtheoremonexponentialstabilityofperiodicevolutionfamiliesonbanachspaces
AT opreajitianu newtheoremonexponentialstabilityofperiodicevolutionfamiliesonbanachspaces
_version_ 1725473929789702144