A new theorem on exponential stability of periodic evolution families on Banach spaces

We consider a mild solution $v_f(cdot, 0)$ of a well-posed inhomogeneous Cauchy problem $dot v(t)=A(t)v(t)+f(t)$, $v(0)=0$ on a complex Banach space $X$, where $A(cdot)$ is a 1-periodic operator-valued function. We prove that if $v_f(cdot, 0)$ belongs to $AP_0(mathbb{R}_+, X)$ for each $fin AP_0(mat...

Full description

Bibliographic Details
Main Authors: Constantin Buse, Oprea Jitianu
Format: Article
Language:English
Published: Texas State University 2003-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2003/14/abstr.html