A Single Nucleotide Substitution of GSAM Gene Causes Massive Accumulation of Glutamate 1-Semialdehyde and Yellow Leaf Phenotype in Rice
Abstract Background Tetrapyrroles play indispensable roles in various biological processes. In higher plants, glutamate 1-semialdehyde 2,1-aminomutase (GSAM) converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA), which is the rate-limiting step of tetrapyrrole biosynthesis. Up to no...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-06-01
|
Series: | Rice |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12284-021-00492-x |