Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.

DNA helicases are ubiquitous enzymes that unwind DNA in an ATP-dependent and directionally specific manner. Unwinding of double-stranded DNA is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Five human DNA helicases sharing sequence similarity with the...

Full description

Bibliographic Details
Main Authors: Sudha Sharma, Robert M Brosh
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2007-12-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2111050?pdf=render
id doaj-c9ad7d6dfdb04b409cfb8f3adcd0e2be
record_format Article
spelling doaj-c9ad7d6dfdb04b409cfb8f3adcd0e2be2020-11-25T01:35:58ZengPublic Library of Science (PLoS)PLoS ONE1932-62032007-12-01212e129710.1371/journal.pone.0001297Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.Sudha SharmaRobert M BroshDNA helicases are ubiquitous enzymes that unwind DNA in an ATP-dependent and directionally specific manner. Unwinding of double-stranded DNA is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Five human DNA helicases sharing sequence similarity with the E. coli RecQ helicase have been identified. Three of the human RecQ helicases are implicated in hereditary diseases (Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome) which display clinical symptoms of premature aging and cancer. RECQ1 helicase is the most highly expressed of the human RecQ helicases; however, a genetic disease has yet not been linked to mutations in the RECQ1 gene, and the biological functions of human RECQ1 in cellular DNA metabolism are not known.In this study, we report that RECQ1 becomes phosphorylated upon DNA damage and forms irradiation-induced nuclear foci that associate with chromatin in human cells. Depletion of RECQ1 renders human cells sensitive to DNA damage induced by ionizing radiation or the topoisomerase inhibitor camptothecin, and results in spontaneous gamma-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks. Consistent with a role in homologous recombinational repair, endogenous RECQ1 is associated with the strand exchange protein Rad51 and the two proteins directly interact with high affinity.Collectively, these results provide the first evidence for a role of human RECQ1 in the response to DNA damage and chromosomal stability maintenance and point to the vital importance of RECQ1 in genome homeostasis.http://europepmc.org/articles/PMC2111050?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Sudha Sharma
Robert M Brosh
spellingShingle Sudha Sharma
Robert M Brosh
Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.
PLoS ONE
author_facet Sudha Sharma
Robert M Brosh
author_sort Sudha Sharma
title Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.
title_short Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.
title_full Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.
title_fullStr Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.
title_full_unstemmed Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.
title_sort human recq1 is a dna damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2007-12-01
description DNA helicases are ubiquitous enzymes that unwind DNA in an ATP-dependent and directionally specific manner. Unwinding of double-stranded DNA is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Five human DNA helicases sharing sequence similarity with the E. coli RecQ helicase have been identified. Three of the human RecQ helicases are implicated in hereditary diseases (Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome) which display clinical symptoms of premature aging and cancer. RECQ1 helicase is the most highly expressed of the human RecQ helicases; however, a genetic disease has yet not been linked to mutations in the RECQ1 gene, and the biological functions of human RECQ1 in cellular DNA metabolism are not known.In this study, we report that RECQ1 becomes phosphorylated upon DNA damage and forms irradiation-induced nuclear foci that associate with chromatin in human cells. Depletion of RECQ1 renders human cells sensitive to DNA damage induced by ionizing radiation or the topoisomerase inhibitor camptothecin, and results in spontaneous gamma-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks. Consistent with a role in homologous recombinational repair, endogenous RECQ1 is associated with the strand exchange protein Rad51 and the two proteins directly interact with high affinity.Collectively, these results provide the first evidence for a role of human RECQ1 in the response to DNA damage and chromosomal stability maintenance and point to the vital importance of RECQ1 in genome homeostasis.
url http://europepmc.org/articles/PMC2111050?pdf=render
work_keys_str_mv AT sudhasharma humanrecq1isadnadamageresponsiveproteinrequiredforgenotoxicstressresistanceandsuppressionofsisterchromatidexchanges
AT robertmbrosh humanrecq1isadnadamageresponsiveproteinrequiredforgenotoxicstressresistanceandsuppressionofsisterchromatidexchanges
_version_ 1725065039788900352