L p $L^{p}$ harmonic 1-forms on conformally flat Riemannian manifolds
Abstract In this paper, we establish a finiteness theorem for L p $L^{p}$ harmonic 1-forms on a locally conformally flat Riemannian manifold under the assumptions on the Schrödinger operators involving the squared norm of the traceless Ricci form. This result can be regarded as a generalization of H...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-04-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13660-021-02616-9 |