Deep Reinforcement Learning-Based Path Planning for Multi-Arm Manipulators with Periodically Moving Obstacles

In the workspace of robot manipulators in practice, it is common that there are both static and periodic moving obstacles. Existing results in the literature have been focusing mainly on the static obstacles. This paper is concerned with multi-arm manipulators with periodically moving obstacles. Due...

Full description

Bibliographic Details
Main Authors: Evan Prianto , Jae-Han Park , Ji-Hun Bae , and Jung-Su Kim 
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/6/2587
Description
Summary:In the workspace of robot manipulators in practice, it is common that there are both static and periodic moving obstacles. Existing results in the literature have been focusing mainly on the static obstacles. This paper is concerned with multi-arm manipulators with periodically moving obstacles. Due to the high-dimensional property and the moving obstacles, existing results suffer from finding the optimal path for given arbitrary starting and goal points. To solve the path planning problem, this paper presents a SAC-based (Soft actor–critic) path planning algorithm for multi-arm manipulators with periodically moving obstacles. In particular, the deep neural networks in the SAC are designed such that they utilize the position information of the moving obstacles over the past finite time horizon. In addition, the hindsight experience replay (HER) technique is employed to use the training data efficiently. In order to show the performance of the proposed SAC-based path planning, both simulation and experiment results using open manipulators are given.
ISSN:2076-3417