Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity
Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2020-02-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/51771 |