An integrated gene regulatory network controls stem cell proliferation in teeth.
Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throug...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2007-06-01
|
Series: | PLoS Biology |
Online Access: | https://doi.org/10.1371/journal.pbio.0050159 |
id |
doaj-c670829e8d30498695f162f205898ffe |
---|---|
record_format |
Article |
spelling |
doaj-c670829e8d30498695f162f205898ffe2021-07-02T16:21:00ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852007-06-0156e15910.1371/journal.pbio.0050159An integrated gene regulatory network controls stem cell proliferation in teeth.Xiu-Ping WangMarika SuomalainenSzabolcs FelszeghyLaura C ZelarayanMaria T AlonsoMaksim V PlikusRichard L MaasCheng-Ming ChuongThomas SchimmangIrma ThesleffEpithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species.https://doi.org/10.1371/journal.pbio.0050159 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiu-Ping Wang Marika Suomalainen Szabolcs Felszeghy Laura C Zelarayan Maria T Alonso Maksim V Plikus Richard L Maas Cheng-Ming Chuong Thomas Schimmang Irma Thesleff |
spellingShingle |
Xiu-Ping Wang Marika Suomalainen Szabolcs Felszeghy Laura C Zelarayan Maria T Alonso Maksim V Plikus Richard L Maas Cheng-Ming Chuong Thomas Schimmang Irma Thesleff An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biology |
author_facet |
Xiu-Ping Wang Marika Suomalainen Szabolcs Felszeghy Laura C Zelarayan Maria T Alonso Maksim V Plikus Richard L Maas Cheng-Ming Chuong Thomas Schimmang Irma Thesleff |
author_sort |
Xiu-Ping Wang |
title |
An integrated gene regulatory network controls stem cell proliferation in teeth. |
title_short |
An integrated gene regulatory network controls stem cell proliferation in teeth. |
title_full |
An integrated gene regulatory network controls stem cell proliferation in teeth. |
title_fullStr |
An integrated gene regulatory network controls stem cell proliferation in teeth. |
title_full_unstemmed |
An integrated gene regulatory network controls stem cell proliferation in teeth. |
title_sort |
integrated gene regulatory network controls stem cell proliferation in teeth. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Biology |
issn |
1544-9173 1545-7885 |
publishDate |
2007-06-01 |
description |
Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species. |
url |
https://doi.org/10.1371/journal.pbio.0050159 |
work_keys_str_mv |
AT xiupingwang anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT marikasuomalainen anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT szabolcsfelszeghy anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT lauraczelarayan anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT mariatalonso anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT maksimvplikus anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT richardlmaas anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT chengmingchuong anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT thomasschimmang anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT irmathesleff anintegratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT xiupingwang integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT marikasuomalainen integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT szabolcsfelszeghy integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT lauraczelarayan integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT mariatalonso integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT maksimvplikus integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT richardlmaas integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT chengmingchuong integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT thomasschimmang integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth AT irmathesleff integratedgeneregulatorynetworkcontrolsstemcellproliferationinteeth |
_version_ |
1721326841911836672 |