Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin

The purpose of research is to analyze the formation of the target market customer segmentation based on job characteristics, income, education, age, region of origin, and patterns of credit card merchant. The data were analyzed using two data mining techniques of clustering with K-Means and Associat...

Full description

Bibliographic Details
Main Authors: Muhammad Riza, Kudang Boro Seminar, Agus Maulana
Format: Article
Language:Indonesian
Published: Bogor Agricultural University 2018-01-01
Series:Jurnal Aplikasi Bisnis dan Manajemen
Online Access:http://journal.ipb.ac.id/index.php/jabm/article/view/13584
id doaj-c6374e5b8c2e4d868bbd3d993d7f1356
record_format Article
spelling doaj-c6374e5b8c2e4d868bbd3d993d7f13562021-01-17T00:09:30ZindBogor Agricultural UniversityJurnal Aplikasi Bisnis dan Manajemen2528-51492460-78192018-01-0141868610.17358/jabm.4.1.8613584Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank BukopinMuhammad Riza0Kudang Boro Seminar1Agus Maulana2Sekolah Bisnis, Institut Pertanian BogorDepartemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian, Institut Pertanian BogorUniversitas Dr SutomoThe purpose of research is to analyze the formation of the target market customer segmentation based on job characteristics, income, education, age, region of origin, and patterns of credit card merchant. The data were analyzed using two data mining techniques of clustering with K-Means and Association Rule Mining (ARM) and supported by Apriori and Random Sampling technique with the Slovin formula and Principal Component Analysis (PCA). The clustering tests in 10 replications on the sampling of 350 clients supported by PCA produced the three best clusters that had the silhouette value close to 1 i.e. 0.39 to 0.40. Meanwhile, the ARM Testing with Apriori using a minimum support of 1% and a minimum confidence of 40% produced two patterns of credit card merchant transactions. In the first pattern, when the Hotel merchant type (hhl) was transacted, the Restaurant merchant type (RRT) was also transacted, and in the second pattern, if the Service Station merchant type (RSS) was transacted, the Restaurant merchant type (RRT) was also transacted. The three clusters and two types of merchant patterns obtained can generate inputs for the company to identify its potential customers based on the characteristics of the target customers by connecting them to the merchant type pattern frequently used. Keywords: credit card, data mining, clustering, ARM, data streamhttp://journal.ipb.ac.id/index.php/jabm/article/view/13584
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Muhammad Riza
Kudang Boro Seminar
Agus Maulana
spellingShingle Muhammad Riza
Kudang Boro Seminar
Agus Maulana
Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin
Jurnal Aplikasi Bisnis dan Manajemen
author_facet Muhammad Riza
Kudang Boro Seminar
Agus Maulana
author_sort Muhammad Riza
title Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin
title_short Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin
title_full Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin
title_fullStr Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin
title_full_unstemmed Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin
title_sort pembentukan target pasar berdasarkan data stream transaksi kartu kredit (clustering dan association rule) pada pt bank bukopin
publisher Bogor Agricultural University
series Jurnal Aplikasi Bisnis dan Manajemen
issn 2528-5149
2460-7819
publishDate 2018-01-01
description The purpose of research is to analyze the formation of the target market customer segmentation based on job characteristics, income, education, age, region of origin, and patterns of credit card merchant. The data were analyzed using two data mining techniques of clustering with K-Means and Association Rule Mining (ARM) and supported by Apriori and Random Sampling technique with the Slovin formula and Principal Component Analysis (PCA). The clustering tests in 10 replications on the sampling of 350 clients supported by PCA produced the three best clusters that had the silhouette value close to 1 i.e. 0.39 to 0.40. Meanwhile, the ARM Testing with Apriori using a minimum support of 1% and a minimum confidence of 40% produced two patterns of credit card merchant transactions. In the first pattern, when the Hotel merchant type (hhl) was transacted, the Restaurant merchant type (RRT) was also transacted, and in the second pattern, if the Service Station merchant type (RSS) was transacted, the Restaurant merchant type (RRT) was also transacted. The three clusters and two types of merchant patterns obtained can generate inputs for the company to identify its potential customers based on the characteristics of the target customers by connecting them to the merchant type pattern frequently used. Keywords: credit card, data mining, clustering, ARM, data stream
url http://journal.ipb.ac.id/index.php/jabm/article/view/13584
work_keys_str_mv AT muhammadriza pembentukantargetpasarberdasarkandatastreamtransaksikartukreditclusteringdanassociationrulepadaptbankbukopin
AT kudangboroseminar pembentukantargetpasarberdasarkandatastreamtransaksikartukreditclusteringdanassociationrulepadaptbankbukopin
AT agusmaulana pembentukantargetpasarberdasarkandatastreamtransaksikartukreditclusteringdanassociationrulepadaptbankbukopin
_version_ 1724335616344195072