Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin
The purpose of research is to analyze the formation of the target market customer segmentation based on job characteristics, income, education, age, region of origin, and patterns of credit card merchant. The data were analyzed using two data mining techniques of clustering with K-Means and Associat...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Bogor Agricultural University
2018-01-01
|
Series: | Jurnal Aplikasi Bisnis dan Manajemen |
Online Access: | http://journal.ipb.ac.id/index.php/jabm/article/view/13584 |
id |
doaj-c6374e5b8c2e4d868bbd3d993d7f1356 |
---|---|
record_format |
Article |
spelling |
doaj-c6374e5b8c2e4d868bbd3d993d7f13562021-01-17T00:09:30ZindBogor Agricultural UniversityJurnal Aplikasi Bisnis dan Manajemen2528-51492460-78192018-01-0141868610.17358/jabm.4.1.8613584Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank BukopinMuhammad Riza0Kudang Boro Seminar1Agus Maulana2Sekolah Bisnis, Institut Pertanian BogorDepartemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian, Institut Pertanian BogorUniversitas Dr SutomoThe purpose of research is to analyze the formation of the target market customer segmentation based on job characteristics, income, education, age, region of origin, and patterns of credit card merchant. The data were analyzed using two data mining techniques of clustering with K-Means and Association Rule Mining (ARM) and supported by Apriori and Random Sampling technique with the Slovin formula and Principal Component Analysis (PCA). The clustering tests in 10 replications on the sampling of 350 clients supported by PCA produced the three best clusters that had the silhouette value close to 1 i.e. 0.39 to 0.40. Meanwhile, the ARM Testing with Apriori using a minimum support of 1% and a minimum confidence of 40% produced two patterns of credit card merchant transactions. In the first pattern, when the Hotel merchant type (hhl) was transacted, the Restaurant merchant type (RRT) was also transacted, and in the second pattern, if the Service Station merchant type (RSS) was transacted, the Restaurant merchant type (RRT) was also transacted. The three clusters and two types of merchant patterns obtained can generate inputs for the company to identify its potential customers based on the characteristics of the target customers by connecting them to the merchant type pattern frequently used. Keywords: credit card, data mining, clustering, ARM, data streamhttp://journal.ipb.ac.id/index.php/jabm/article/view/13584 |
collection |
DOAJ |
language |
Indonesian |
format |
Article |
sources |
DOAJ |
author |
Muhammad Riza Kudang Boro Seminar Agus Maulana |
spellingShingle |
Muhammad Riza Kudang Boro Seminar Agus Maulana Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin Jurnal Aplikasi Bisnis dan Manajemen |
author_facet |
Muhammad Riza Kudang Boro Seminar Agus Maulana |
author_sort |
Muhammad Riza |
title |
Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin |
title_short |
Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin |
title_full |
Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin |
title_fullStr |
Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin |
title_full_unstemmed |
Pembentukan Target Pasar Berdasarkan Data Stream Transaksi Kartu Kredit (Clustering dan Association Rule) pada PT Bank Bukopin |
title_sort |
pembentukan target pasar berdasarkan data stream transaksi kartu kredit (clustering dan association rule) pada pt bank bukopin |
publisher |
Bogor Agricultural University |
series |
Jurnal Aplikasi Bisnis dan Manajemen |
issn |
2528-5149 2460-7819 |
publishDate |
2018-01-01 |
description |
The purpose of research is to analyze the formation of the target market customer segmentation based on job characteristics, income, education, age, region of origin, and patterns of credit card merchant. The data were analyzed using two data mining techniques of clustering with K-Means and Association Rule Mining (ARM) and supported by Apriori and Random Sampling technique with the Slovin formula and Principal Component Analysis (PCA). The clustering tests in 10 replications on the sampling of 350 clients supported by PCA produced the three best clusters that had the silhouette value close to 1 i.e. 0.39 to 0.40. Meanwhile, the ARM Testing with Apriori using a minimum support of 1% and a minimum confidence of 40% produced two patterns of credit card merchant transactions. In the first pattern, when the Hotel merchant type (hhl) was transacted, the Restaurant merchant type (RRT) was also transacted, and in the second pattern, if the Service Station merchant type (RSS) was transacted, the Restaurant merchant type (RRT) was also transacted. The three clusters and two types of merchant patterns obtained can generate inputs for the company to identify its potential customers based on the characteristics of the target customers by connecting them to the merchant type pattern frequently used.
Keywords: credit card, data mining, clustering, ARM, data stream |
url |
http://journal.ipb.ac.id/index.php/jabm/article/view/13584 |
work_keys_str_mv |
AT muhammadriza pembentukantargetpasarberdasarkandatastreamtransaksikartukreditclusteringdanassociationrulepadaptbankbukopin AT kudangboroseminar pembentukantargetpasarberdasarkandatastreamtransaksikartukreditclusteringdanassociationrulepadaptbankbukopin AT agusmaulana pembentukantargetpasarberdasarkandatastreamtransaksikartukreditclusteringdanassociationrulepadaptbankbukopin |
_version_ |
1724335616344195072 |