Graph Deep Learning: State of the Art and Challenges

The last half-decade has seen a surge in deep learning research on irregular domains and efforts to extend convolutional neural networks (CNNs) to work on irregularly structured data. The graph has emerged as a particularly useful geometrical object in deep learning, able to represent a variety of i...

Full description

Bibliographic Details
Main Authors: Stavros Georgousis, Michael P. Kenning, Xianghua Xie
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9339909/