Learning Augmentation for GNNs With Consistency Regularization
Graph neural networks (GNNs) have demonstrated superior performance in various tasks on graphs. However, existing GNNs often suffer from weak-generalization due to sparsely labeled datasets. Here we propose a novel framework that learns to augment the input features using topological information and...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9535521/ |