Limitations of the incidence density ratio as approximation of the hazard ratio

Abstract Background Incidence density ratios (IDRs) are frequently used to account for varying follow-up times when comparing the risks of adverse events in two treatment groups. The validity of the IDR as approximation of the hazard ratio (HR) is unknown in the situation of differential average fol...

Full description

Bibliographic Details
Main Authors: Ralf Bender, Lars Beckmann
Format: Article
Language:English
Published: BMC 2019-08-01
Series:Trials
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13063-019-3590-2
Description
Summary:Abstract Background Incidence density ratios (IDRs) are frequently used to account for varying follow-up times when comparing the risks of adverse events in two treatment groups. The validity of the IDR as approximation of the hazard ratio (HR) is unknown in the situation of differential average follow up by treatment group and non-constant hazard functions. Thus, the use of the IDR when individual patient data are not available might be questionable. Methods A simulation study was performed using various survival-time distributions with increasing and decreasing hazard functions and various situations of differential follow up by treatment group. HRs and IDRs were estimated from the simulated survival times and compared with the true HR. A rule of thumb was derived to decide in which data situations the IDR can be used as approximation of the HR. Results The results show that the validity of the IDR depends on the survival-time distribution, the difference between the average follow-up durations, the baseline risk, and the sample size. For non-constant hazard functions, the IDR is only an adequate approximation of the HR if the average follow-up durations of the groups are equal and the baseline risk is not larger than 25%. In the case of large differences in the average follow-up durations between the groups and non-constant hazard functions, the IDR represents no valid approximation of the HR. Conclusions The proposed rule of thumb allows the use of the IDR as approximation of the HR in specific data situations, when it is not possible to estimate the HR by means of adequate survival-time methods because the required individual patient data are not available. However, in general, adequate survival-time methods should be used to analyze adverse events rather than the simple IDR.
ISSN:1745-6215