Privacy preserving anomaly detection based on local density estimation
Anomaly detection has been widely researched in financial, biomedical and other areas. However, most existing algorithms have high time complexity. Another important problem is how to efficiently detect anomalies while protecting data privacy. In this paper, we propose a fast anomaly detection algor...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-05-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2020196?viewType=HTML |