Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making.
Classic reinforcement learning (RL) theories cannot explain human behavior in the absence of external reward or when the environment changes. Here, we employ a deep sequential decision-making paradigm with sparse reward and abrupt environmental changes. To explain the behavior of human participants...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021-06-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1009070 |