Polylactic acid (PLA) based green composites reinforced pineapple leaf fibres: evaluation of processing and tensile performance

This paper reports on a study of the compression moulding and the vacuum forming of unidirectional pineapple leaf fibres/polylactic acid composites and the influence of process variables on the tensile properties of the material. The characterisation of the micro and meso structures of the pineapple...

Full description

Bibliographic Details
Main Authors: Chaishome Jedsada, Supapvanich Suriyan
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2018/51/matecconf_iceast2018_03002.pdf
Description
Summary:This paper reports on a study of the compression moulding and the vacuum forming of unidirectional pineapple leaf fibres/polylactic acid composites and the influence of process variables on the tensile properties of the material. The characterisation of the micro and meso structures of the pineapple leaf fibres is reported. The effect of consolidation temperature on the fibre thermal stability and the tensile properties of the composites is investigated. The results show that vacuum forming was found to be preferable process with high stiffness modulus and UTS of the composites, compared to compression moulding. The insignificant detrimental effect of 165°C high consolidation temperature was observed. Finally, the fibre thermal degradation seems to dominate the composite tensile performance over its interfacial quality between the fibre and the matrix.
ISSN:2261-236X