Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics
<p>Abstract</p> <p>Background</p> <p>Changes in cell shape and plasticity in cytoskeletal dynamics are critically involved in cell adhesion, migration, invasion and the overall process of metastasis. Previous work in our laboratory demonstrated that the synthetic steroi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2013-01-01
|
Series: | BMC Cancer |
Online Access: | http://www.biomedcentral.com/1471-2407/13/35 |
id |
doaj-c0bc4db6ed974a8bac988e6c1010bb46 |
---|---|
record_format |
Article |
spelling |
doaj-c0bc4db6ed974a8bac988e6c1010bb462020-11-25T00:23:16ZengBMCBMC Cancer1471-24072013-01-011313510.1186/1471-2407-13-35Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamicsBrandhagen BreeAnn NTieszen Chelsea RUlmer Tara MTracy Maria SGoyeneche Alicia ATelleria Carlos M<p>Abstract</p> <p>Background</p> <p>Changes in cell shape and plasticity in cytoskeletal dynamics are critically involved in cell adhesion, migration, invasion and the overall process of metastasis. Previous work in our laboratory demonstrated that the synthetic steroid mifepristone inhibited the growth of highly metastatic cancer cells, while simultaneously causing striking changes in cellular morphology. Here we assessed whether such morphological alterations developed in response to cytostatic concentrations of mifepristone are reversible or permanent, involve rearrangement of cytoskeletal proteins, and/or affect the adhesive capacity of the cells.</p> <p>Methods</p> <p>Cancer cell lines of the ovary (SKOV-3), breast (MDA-MB-231), prostate (LNCaP), and nervous system (U87MG) were exposed to cytostatic concentrations of mifepristone and studied by phase-contrast microscopy. The transient or permanent nature of the cytostasis and morphological changes caused by mifepristone was assessed, as well as the rearrangement of cytoskeletal proteins. De-adhesion and adhesion assays were utilized to determine if mifepristone-arrested and morphologically dysregulated cells had abnormal de-adhesion/adhesion dynamics when compared to vehicle-treated controls.</p> <p>Results</p> <p>Mifepristone-treated cells displayed a long, thin, spindle-like shape with boundaries resembling those of loosely adhered cells. Growth arrest and morphology changes caused by mifepristone were reversible in SKOV-3, MDA-MB-231 and U87MG, but not in LNCaP cells that instead became senescent. All cancer cell types exposed to mifepristone displayed greatly increased actin ruffling in association with accelerated de-adhesion from the culture plate, and delayed adhesion capacity to various extracellular matrix components.</p> <p>Conclusions</p> <p>Cytostatic concentrations of mifepristone induced alterations in the cellular structure of a panel of aggressive, highly metastatic cancer cells of different tissues of origin. Such changes were associated with re-distribution of actin fibers that mainly form non-adhesive membrane ruffles, leading to dysregulated cellular adhesion capacity.</p> http://www.biomedcentral.com/1471-2407/13/35 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Brandhagen BreeAnn N Tieszen Chelsea R Ulmer Tara M Tracy Maria S Goyeneche Alicia A Telleria Carlos M |
spellingShingle |
Brandhagen BreeAnn N Tieszen Chelsea R Ulmer Tara M Tracy Maria S Goyeneche Alicia A Telleria Carlos M Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics BMC Cancer |
author_facet |
Brandhagen BreeAnn N Tieszen Chelsea R Ulmer Tara M Tracy Maria S Goyeneche Alicia A Telleria Carlos M |
author_sort |
Brandhagen BreeAnn N |
title |
Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics |
title_short |
Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics |
title_full |
Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics |
title_fullStr |
Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics |
title_full_unstemmed |
Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics |
title_sort |
cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics |
publisher |
BMC |
series |
BMC Cancer |
issn |
1471-2407 |
publishDate |
2013-01-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Changes in cell shape and plasticity in cytoskeletal dynamics are critically involved in cell adhesion, migration, invasion and the overall process of metastasis. Previous work in our laboratory demonstrated that the synthetic steroid mifepristone inhibited the growth of highly metastatic cancer cells, while simultaneously causing striking changes in cellular morphology. Here we assessed whether such morphological alterations developed in response to cytostatic concentrations of mifepristone are reversible or permanent, involve rearrangement of cytoskeletal proteins, and/or affect the adhesive capacity of the cells.</p> <p>Methods</p> <p>Cancer cell lines of the ovary (SKOV-3), breast (MDA-MB-231), prostate (LNCaP), and nervous system (U87MG) were exposed to cytostatic concentrations of mifepristone and studied by phase-contrast microscopy. The transient or permanent nature of the cytostasis and morphological changes caused by mifepristone was assessed, as well as the rearrangement of cytoskeletal proteins. De-adhesion and adhesion assays were utilized to determine if mifepristone-arrested and morphologically dysregulated cells had abnormal de-adhesion/adhesion dynamics when compared to vehicle-treated controls.</p> <p>Results</p> <p>Mifepristone-treated cells displayed a long, thin, spindle-like shape with boundaries resembling those of loosely adhered cells. Growth arrest and morphology changes caused by mifepristone were reversible in SKOV-3, MDA-MB-231 and U87MG, but not in LNCaP cells that instead became senescent. All cancer cell types exposed to mifepristone displayed greatly increased actin ruffling in association with accelerated de-adhesion from the culture plate, and delayed adhesion capacity to various extracellular matrix components.</p> <p>Conclusions</p> <p>Cytostatic concentrations of mifepristone induced alterations in the cellular structure of a panel of aggressive, highly metastatic cancer cells of different tissues of origin. Such changes were associated with re-distribution of actin fibers that mainly form non-adhesive membrane ruffles, leading to dysregulated cellular adhesion capacity.</p> |
url |
http://www.biomedcentral.com/1471-2407/13/35 |
work_keys_str_mv |
AT brandhagenbreeannn cytostasisandmorphologicalchangesinducedbymifepristoneinhumanmetastaticcancercellsinvolvecytoskeletalfilamentousactinreorganizationandimpairmentofcelladhesiondynamics AT tieszenchelsear cytostasisandmorphologicalchangesinducedbymifepristoneinhumanmetastaticcancercellsinvolvecytoskeletalfilamentousactinreorganizationandimpairmentofcelladhesiondynamics AT ulmertaram cytostasisandmorphologicalchangesinducedbymifepristoneinhumanmetastaticcancercellsinvolvecytoskeletalfilamentousactinreorganizationandimpairmentofcelladhesiondynamics AT tracymarias cytostasisandmorphologicalchangesinducedbymifepristoneinhumanmetastaticcancercellsinvolvecytoskeletalfilamentousactinreorganizationandimpairmentofcelladhesiondynamics AT goyenechealiciaa cytostasisandmorphologicalchangesinducedbymifepristoneinhumanmetastaticcancercellsinvolvecytoskeletalfilamentousactinreorganizationandimpairmentofcelladhesiondynamics AT telleriacarlosm cytostasisandmorphologicalchangesinducedbymifepristoneinhumanmetastaticcancercellsinvolvecytoskeletalfilamentousactinreorganizationandimpairmentofcelladhesiondynamics |
_version_ |
1725357917050241024 |