Adversarial Learning and Interpolation Consistency for Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) aims to learn a prediction model for the target domain given labeled source data and unlabeled target data. Impressive progress has been made by adversarial learning-based methods that align distributions across domains through deceiving a domain discriminator ne...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8913529/ |