Summary: | <p>Abstract</p> <p>Background</p> <p>Nkx2.2 and Arx represent key transcription factors implicated in the specification of islet cell subtypes during pancreas development. Mice deficient for <it>Arx </it>do not develop any alpha-cells whereas beta- and delta-cells are found in considerably higher numbers. In <it>Nkx2.2 </it>mutant animals, alpha- and beta-cell development is severely impaired whereas a ghrelin-expressing cell population is found augmented.</p> <p>Notably, <it>Arx </it>transcription is clearly enhanced in <it>Nkx2.2</it>-deficient pancreata. Hence in order to precise the functional link between both factors we performed a comparative analysis of <it>Nkx2.2/Arx </it>single- and double-mutants but also of <it>Pax6</it>-deficient animals.</p> <p>Results</p> <p>We show that most of the ghrelin<sup>+ </sup>cells emerging in pancreata of <it>Nkx2.2</it>- and <it>Pax6</it>-deficient mice, express the alpha-cell specifier Arx, but also additional beta-cell related genes. In <it>Nkx2.2</it>-deficient mice, Arx directly co-localizes with iAPP, PC1/3 and Pdx1 suggesting an Nkx2.2-dependent control of <it>Arx </it>in committed beta-cells. The combined loss of <it>Nkx2.2 </it>and <it>Arx </it>likewise results in the formation of a hyperplastic ghrelin<sup>+ </sup>cell population at the expense of mature alpha- and beta-cells. Surprisingly, such <it>Nkx2.2<sup>-/-</sup>Arx<sup>- </sup></it>ghrelin<sup>+ </sup>cells also express the somatostatin hormone.</p> <p>Conclusions</p> <p>Our data indicate that Nkx2.2 acts by reinforcing the transcriptional networks initiated by Pax4 and Arx in early committed beta- and alpha-cell, respectively. Our analysis also suggests that one of the coupled functions of Nkx2.2 and Pax4 is to counteract <it>Arx </it>gene activity in early committed beta-cells.</p>
|