A lower bound for the L_2[-1,1]-norm of the logarithmic derivative of polynomials with zeros on the unit circle

Let C be the unit circle {z: |z| = 1} and Qn(z) bean arbitrary C-polynomial (i. e., all its zeros z1, . . ., zn ∈ C). We prove that the norm of the logarithmic derivative Q′n/Qn in the complex space L_2[−1,1] is greater than 1/8.

Bibliographic Details
Main Author: Komarov M. A.
Format: Article
Language:English
Published: Petrozavodsk State University 2019-05-01
Series:Проблемы анализа
Subjects:
Online Access:http://issuesofanalysis.petrsu.ru/article/genpdf.php?id=6030&lang=ru