Sharp Nagy type inequalities for the classes of functions with given quotient of the uniform norms of positive and negative parts of a function
For any $p\in (0, \infty],$ $\omega > 0,$ $d \ge 2 \omega,$ we obtain the sharp inequality of Nagy type $$ \|x_{\pm}\|_\infty \le \frac{\|(\varphi+c)_{\pm}\|_\infty}{\|\varphi+c\|_{L_p(I_{2\omega} )}} \left\|x \right\|_{L_{p} \left(I_d \right)} $$ on the set $S_{\varphi}(\omega)$ of $d$-pe...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Oles Honchar Dnipro National University
2020-08-01
|
Series: | Researches in Mathematics |
Subjects: | |
Online Access: | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/124/124 |