Sharp Nagy type inequalities for the classes of functions with given quotient of the uniform norms of positive and negative parts of a function

For any $p\in (0, \infty],$ $\omega > 0,$ $d \ge 2 \omega,$ we obtain the sharp inequality of Nagy type $$ \|x_{\pm}\|_\infty \le \frac{\|(\varphi+c)_{\pm}\|_\infty}{\|\varphi+c\|_{L_p(I_{2\omega} )}} \left\|x \right\|_{L_{p} \left(I_d \right)} $$ on the set $S_{\varphi}(\omega)$ of $d$-pe...

Full description

Bibliographic Details
Main Authors: V.A. Kofanov, I.V. Popovich
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2020-08-01
Series:Researches in Mathematics
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/rim/article/view/124/124