A Randomized Subspace Learning Based Anomaly Detector for Hyperspectral Imagery
This paper proposes a randomized subspace learning based anomaly detector (RSLAD) for hyperspectral imagery (HSI). Improved from robust principal component analysis, the RSLAD assumes that the background matrix is low-rank, and the anomaly matrix is sparse with a small portion of nonzero columns (i....
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-03-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/10/3/417 |