Discretization methods for nonconvex differential inclusions
We prove the existence of solutions for the differential inclusion $\dot x(t)\in F(t,x(t)) + f(t,x(t))$ for a multifunction $F$ upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and $f$ a Carath\'{e}odory function.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2009-03-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=365 |