A novel MCF-10A line allowing conditional oncogene expression in 3D culture

<p/> <p>Introduction</p> <p>Non-transformed mammary epithelial cell lines such as MCF-10A recapitulate epithelial morphogenesis in three-dimensional (3D) tissue culture by forming acinar structures. They represent an important tool to characterize the biological properties of...

Full description

Bibliographic Details
Main Authors: Danke Christina, Wöhrle Franziska U, Herr Ricarda, Berens Christian, Brummer Tilman
Format: Article
Language:English
Published: BMC 2011-07-01
Series:Cell Communication and Signaling
Subjects:
Online Access:http://www.biosignaling.com/content/9/1/17
Description
Summary:<p/> <p>Introduction</p> <p>Non-transformed mammary epithelial cell lines such as MCF-10A recapitulate epithelial morphogenesis in three-dimensional (3D) tissue culture by forming acinar structures. They represent an important tool to characterize the biological properties of oncogenes and to model early carcinogenic events. So far, however, these approaches were restricted to cells with constitutive oncogene expression prior to the set-up of 3D cultures. Although very informative, this experimental setting has precluded the analysis of effects caused by sudden oncoprotein expression or withdrawal in established epithelial cultures. Here, we report the establishment and use of a stable MCF-10A cell line (MCF-10Atet) fitted with a novel and improved doxycycline (dox)-regulated expression system allowing the conditional expression of any transgene.</p> <p>Methods</p> <p>MCF-10Atet cells were generated by stable transfection with pWHE644, a vector expressing a second generation tetracycline-regulated transactivator and a novel transcriptional silencer. In order to test the properties of this new repressor/activator switch, MCF-10Atet cells were transfected with a second plasmid, pTET-HA<it>BRAF</it>-IRES-GFP, which responds to dox treatment with the production of a bi-cistronic transcript encoding hemagglutinin-tagged B-Raf and green fluorescent protein (GFP). This improved conditional expression system was then characterized in detail in terms of its response to various dox concentrations and exposure times. The plasticity of the phenotype provoked by oncogenic B-Raf<sup>V600E </sup>in MCF-10Atet cells was analyzed in 3D cultures by dox exposure and subsequent wash-out.</p> <p>Results</p> <p>MCF-10Atet cells represent a tightly controlled, conditional gene expression system. Using B-Raf<sup>V600E </sup>as a model oncoprotein, we show that its sudden expression in established 3D cultures results in the loss of acinar organization, the induction of an invasive phenotype and hallmarks of epithelial-to-mesenchymal transition (EMT). Importantly, we show for the first time that this severe transformed phenotype can be reversed by dox wash-out and concomitant termination of oncogene expression.</p> <p>Conclusions</p> <p>Taken together, we have generated a stable MCF-10A subline allowing tight dox-controlled and reversible expression of any transgene without the need to modify its product by introducing artificial dimerization or ligand-binding domains. This system will be very valuable to address phenomena such as EMT, oncogene addiction, oncogene-induced senescence and drug resistance.</p>
ISSN:1478-811X