Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age
Mandibular condylar cartilage (MCC) exhibits dual roles both articular cartilage and growth center. Of many growth factors, TGF-β has been implicated in the growth of articular cartilage including MCC. Recently, Asporin, decoy to TGF-β, was discovered and it blocks TGF-β signaling. Asporin is expres...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017-12-01
|
Series: | Bone Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352187217300207 |
id |
doaj-b263d7c22c99404fadd28c3aa6f266d5 |
---|---|
record_format |
Article |
spelling |
doaj-b263d7c22c99404fadd28c3aa6f266d52020-11-24T22:29:40ZengElsevierBone Reports2352-18722017-12-017C415010.1016/j.bonr.2017.07.002Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with ageYutaka Miyamoto0Hiroyuki Kanzaki1Satoshi Wada2Sari Tsuruoka3Kanako Itohiya4Kenichi Kumagai5Yoshiki Hamada6Yoshiki Nakamura7Department of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanDepartment of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanDepartment of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanDepartment of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanDepartment of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanDepartment of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanDepartment of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanDepartment of orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa Pref., JapanMandibular condylar cartilage (MCC) exhibits dual roles both articular cartilage and growth center. Of many growth factors, TGF-β has been implicated in the growth of articular cartilage including MCC. Recently, Asporin, decoy to TGF-β, was discovered and it blocks TGF-β signaling. Asporin is expressed in a variety of tissues including osteoarthritic articular cartilage, though there was no report of Asporin expression in MCC. In the present study, we investigated the temporal and spatial expression of Asporin in MCC. Gene expression profile of MCC and epiphyseal cartilage in tibia of 5 weeks old ICR mice were firstly compared with microarray analysis using the laser capture microdissected samples. Variance of gene expression was further confirmed by real-time RT-PCR and immunohistochemical staining at 1,3,10, and 20 weeks old. TGF-β and its signaling molecule, phosphorylated Smad-2/3 (p-Smad2/3), were also examined by immunohistochemical staining. Microarray analysis revealed that Asporin was highly expressed in MCC. Real-time RT-PCR analysis confirmed that the fibrous layer of MCC exhibited stable higher Asporin expression at any time points as compared to epiphyseal cartilage. This was also observed in immunohistochemical staining. Deeper layer in MCC augmented Asporin expression with age. Whereas, TGF-β was stably highly observed in the layer. The fibrous layer of MCC exhibited weak staining of p-Smad2/3, though the proliferating layer of MCC was strongly stained as compared to epiphyseal cartilage of tibia at early time point. Consistent with the increase of Asporin expression in the deeper layer of MCC, the intensity of p-Smad-2/3 staining was decreased with age. In conclusion, we discovered that Asporin was stably expressed at the fibrous layer of MCC, which makes it possible to manage both articular cartilage and growth center at the same time.http://www.sciencedirect.com/science/article/pii/S2352187217300207Mandibular condylar cartilageGrowth plateAsporinTGF-βEndochondral growth |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yutaka Miyamoto Hiroyuki Kanzaki Satoshi Wada Sari Tsuruoka Kanako Itohiya Kenichi Kumagai Yoshiki Hamada Yoshiki Nakamura |
spellingShingle |
Yutaka Miyamoto Hiroyuki Kanzaki Satoshi Wada Sari Tsuruoka Kanako Itohiya Kenichi Kumagai Yoshiki Hamada Yoshiki Nakamura Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age Bone Reports Mandibular condylar cartilage Growth plate Asporin TGF-β Endochondral growth |
author_facet |
Yutaka Miyamoto Hiroyuki Kanzaki Satoshi Wada Sari Tsuruoka Kanako Itohiya Kenichi Kumagai Yoshiki Hamada Yoshiki Nakamura |
author_sort |
Yutaka Miyamoto |
title |
Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age |
title_short |
Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age |
title_full |
Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age |
title_fullStr |
Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age |
title_full_unstemmed |
Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age |
title_sort |
asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age |
publisher |
Elsevier |
series |
Bone Reports |
issn |
2352-1872 |
publishDate |
2017-12-01 |
description |
Mandibular condylar cartilage (MCC) exhibits dual roles both articular cartilage and growth center. Of many growth factors, TGF-β has been implicated in the growth of articular cartilage including MCC. Recently, Asporin, decoy to TGF-β, was discovered and it blocks TGF-β signaling. Asporin is expressed in a variety of tissues including osteoarthritic articular cartilage, though there was no report of Asporin expression in MCC. In the present study, we investigated the temporal and spatial expression of Asporin in MCC.
Gene expression profile of MCC and epiphyseal cartilage in tibia of 5 weeks old ICR mice were firstly compared with microarray analysis using the laser capture microdissected samples. Variance of gene expression was further confirmed by real-time RT-PCR and immunohistochemical staining at 1,3,10, and 20 weeks old. TGF-β and its signaling molecule, phosphorylated Smad-2/3 (p-Smad2/3), were also examined by immunohistochemical staining.
Microarray analysis revealed that Asporin was highly expressed in MCC. Real-time RT-PCR analysis confirmed that the fibrous layer of MCC exhibited stable higher Asporin expression at any time points as compared to epiphyseal cartilage. This was also observed in immunohistochemical staining. Deeper layer in MCC augmented Asporin expression with age. Whereas, TGF-β was stably highly observed in the layer. The fibrous layer of MCC exhibited weak staining of p-Smad2/3, though the proliferating layer of MCC was strongly stained as compared to epiphyseal cartilage of tibia at early time point. Consistent with the increase of Asporin expression in the deeper layer of MCC, the intensity of p-Smad-2/3 staining was decreased with age.
In conclusion, we discovered that Asporin was stably expressed at the fibrous layer of MCC, which makes it possible to manage both articular cartilage and growth center at the same time. |
topic |
Mandibular condylar cartilage Growth plate Asporin TGF-β Endochondral growth |
url |
http://www.sciencedirect.com/science/article/pii/S2352187217300207 |
work_keys_str_mv |
AT yutakamiyamoto asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage AT hiroyukikanzaki asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage AT satoshiwada asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage AT saritsuruoka asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage AT kanakoitohiya asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage AT kenichikumagai asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage AT yoshikihamada asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage AT yoshikinakamura asporinstablyexpressedinthesurfacelayerofmandibularcondylarcartilageandaugmentedinthedeeperlayerwithage |
_version_ |
1725743628661293056 |