Direct analogues of Wiman's inequality for analytic functions in the unit disc

Let $f(z)=sum_{n=0}^{infty} a_n z^n$ be an analytic function on${z:|z|<1}, hin H$ and$Omega_f(r)= sum_{n=0}^{infty} |a_n| r^n$. If$$eta_{fh}=varliminflimits_{ro1}frac{lnlnOmega_f(r)}{ln h(r)}=+infty,$$then Wiman's inequality$M_f(r)leq mu_f(r) ln^{1/2+delta}mu_f(r)$is true for all $rin (r_0,...

Full description

Bibliographic Details
Main Authors: Skaskiv O.B., Kuryliak A.O.
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2010-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/51/43