NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.
Segmenting cell nuclei within microscopy images is a ubiquitous task in biological research and clinical applications. Unfortunately, segmenting low-contrast overlapping objects that may be tightly packed is a major bottleneck in standard deep learning-based models. We report a Nuclear Segmentation...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-09-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1008193 |