Unsupervised Seismic Random Noise Attenuation Based on Deep Convolutional Neural Network
Random noise attenuation is one of the most essential steps in seismic signal processing. We propose a novel approach to attenuate seismic random noise based on deep convolutional neural network (CNN) in an unsupervised learning manner. First, normalization and patch sampling are required to build t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8932397/ |