Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation

Let $\mathcal{H}$ denote the Hilbert transform and $\eta \ge 0$. We show that if the initial data of the following problems $ u_t + u u_x + u_{xxx} + \eta(\mathcal{H} u_x + \mathcal{H} u_{xxx}) = 0, \, u(\cdot , 0) = \phi (\cdot)$ and $ v_t + \frac{1}{2} (v_x)^2 + v_{xxx} + \eta(\mathcal{H} v_x...

Full description

Bibliographic Details
Main Author: B. Alvarez Samaniego
Format: Article
Language:English
Published: University of Szeged 2005-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=230
id doaj-aec6aa04fdc844b98a4977fc8f09c7f5
record_format Article
spelling doaj-aec6aa04fdc844b98a4977fc8f09c7f52021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752005-11-0120052012110.14232/ejqtde.2005.1.20230Spatial analyticity of solutions of a nonlocal perturbation of the KdV equationB. Alvarez Samaniego0IMECC-UNICAMP, Campinas, BrasilLet $\mathcal{H}$ denote the Hilbert transform and $\eta \ge 0$. We show that if the initial data of the following problems $ u_t + u u_x + u_{xxx} + \eta(\mathcal{H} u_x + \mathcal{H} u_{xxx}) = 0, \, u(\cdot , 0) = \phi (\cdot)$ and $ v_t + \frac{1}{2} (v_x)^2 + v_{xxx} + \eta(\mathcal{H} v_x + \mathcal{H} v_{xxx}) = 0, \, v(\cdot , 0) = \psi (\cdot)$ has an analytic continuation to a strip containing the real axis, then the solution has the same property, although the width of the strip might diminish with time. When $\eta>0$ and the initial data is complex-valued we prove local well-posedness of the two problems above in spaces of analytic functions, which implies the constancy over time of the radius of the strip of analyticity in the complex plane around the real axis.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=230
collection DOAJ
language English
format Article
sources DOAJ
author B. Alvarez Samaniego
spellingShingle B. Alvarez Samaniego
Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation
Electronic Journal of Qualitative Theory of Differential Equations
author_facet B. Alvarez Samaniego
author_sort B. Alvarez Samaniego
title Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation
title_short Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation
title_full Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation
title_fullStr Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation
title_full_unstemmed Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation
title_sort spatial analyticity of solutions of a nonlocal perturbation of the kdv equation
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2005-11-01
description Let $\mathcal{H}$ denote the Hilbert transform and $\eta \ge 0$. We show that if the initial data of the following problems $ u_t + u u_x + u_{xxx} + \eta(\mathcal{H} u_x + \mathcal{H} u_{xxx}) = 0, \, u(\cdot , 0) = \phi (\cdot)$ and $ v_t + \frac{1}{2} (v_x)^2 + v_{xxx} + \eta(\mathcal{H} v_x + \mathcal{H} v_{xxx}) = 0, \, v(\cdot , 0) = \psi (\cdot)$ has an analytic continuation to a strip containing the real axis, then the solution has the same property, although the width of the strip might diminish with time. When $\eta>0$ and the initial data is complex-valued we prove local well-posedness of the two problems above in spaces of analytic functions, which implies the constancy over time of the radius of the strip of analyticity in the complex plane around the real axis.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=230
work_keys_str_mv AT balvarezsamaniego spatialanalyticityofsolutionsofanonlocalperturbationofthekdvequation
_version_ 1721303858902204416