Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation
Let $\mathcal{H}$ denote the Hilbert transform and $\eta \ge 0$. We show that if the initial data of the following problems $ u_t + u u_x + u_{xxx} + \eta(\mathcal{H} u_x + \mathcal{H} u_{xxx}) = 0, \, u(\cdot , 0) = \phi (\cdot)$ and $ v_t + \frac{1}{2} (v_x)^2 + v_{xxx} + \eta(\mathcal{H} v_x...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2005-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=230 |