Spatial analyticity of solutions of a nonlocal perturbation of the KdV equation

Let $\mathcal{H}$ denote the Hilbert transform and $\eta \ge 0$. We show that if the initial data of the following problems $ u_t + u u_x + u_{xxx} + \eta(\mathcal{H} u_x + \mathcal{H} u_{xxx}) = 0, \, u(\cdot , 0) = \phi (\cdot)$ and $ v_t + \frac{1}{2} (v_x)^2 + v_{xxx} + \eta(\mathcal{H} v_x...

Full description

Bibliographic Details
Main Author: B. Alvarez Samaniego
Format: Article
Language:English
Published: University of Szeged 2005-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=230