Nonlinear-Observer-Based Design Approach for Adaptive Event-Driven Tracking of Uncertain Underactuated Underwater Vehicles
A nonlinear-observer-based design methodology is proposed for an adaptive event-driven output-feedback tracking problem with guaranteed performance of uncertain underactuated underwater vehicles (UUVs) in six-degrees-of-freedom (6-DOF). A nonlinear observer using adaptive neural networks is presente...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/10/1144 |
Summary: | A nonlinear-observer-based design methodology is proposed for an adaptive event-driven output-feedback tracking problem with guaranteed performance of uncertain underactuated underwater vehicles (UUVs) in six-degrees-of-freedom (6-DOF). A nonlinear observer using adaptive neural networks is presented to estimate the velocity information in the presence of unknown nonlinearities in the dynamics of 6-DOF UUVs where a state transformation approach using a time-varying scaling factor is introduced. Then, an output-feedback tracker using a nonlinear error function and estimated states is recursively designed to overcome the underactuated problem of the system dynamics and to guarantee preselected control performance in three-dimensional space. It is shown that the tracking error of the nonlinear-observer-based output-feedback control system exponentially converges a small neighbourhood around the zero. Efficiency of the resulting output-feedback strategy is verified through a simulation. |
---|---|
ISSN: | 2227-7390 |