An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-01-01
|
Series: | Communications Biology |
Online Access: | https://doi.org/10.1038/s42003-021-01677-2 |
id |
doaj-ad2ac98641494ad49b5bb3bf054219d6 |
---|---|
record_format |
Article |
spelling |
doaj-ad2ac98641494ad49b5bb3bf054219d62021-01-31T16:16:18ZengNature Publishing GroupCommunications Biology2399-36422021-01-014111010.1038/s42003-021-01677-2An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in ChinaWenzhong Shi0Chengzhuo Tong1Anshu Zhang2Bin Wang3Zhicheng Shi4Yepeng Yao5Peng Jia6Smart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversityCollege of Oceanography and Space Informatics, China University of PetroleumResearch Institute for Smart Cities, School of Architecture and Urban Planning, Shenzhen UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversityWenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1–2 days and decreased onset risk by up to 21%.https://doi.org/10.1038/s42003-021-01677-2 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wenzhong Shi Chengzhuo Tong Anshu Zhang Bin Wang Zhicheng Shi Yepeng Yao Peng Jia |
spellingShingle |
Wenzhong Shi Chengzhuo Tong Anshu Zhang Bin Wang Zhicheng Shi Yepeng Yao Peng Jia An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China Communications Biology |
author_facet |
Wenzhong Shi Chengzhuo Tong Anshu Zhang Bin Wang Zhicheng Shi Yepeng Yao Peng Jia |
author_sort |
Wenzhong Shi |
title |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_short |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_full |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_fullStr |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_full_unstemmed |
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China |
title_sort |
extended weight kernel density estimation model forecasts covid-19 onset risk and identifies spatiotemporal variations of lockdown effects in china |
publisher |
Nature Publishing Group |
series |
Communications Biology |
issn |
2399-3642 |
publishDate |
2021-01-01 |
description |
Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1–2 days and decreased onset risk by up to 21%. |
url |
https://doi.org/10.1038/s42003-021-01677-2 |
work_keys_str_mv |
AT wenzhongshi anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT chengzhuotong anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT anshuzhang anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT binwang anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT zhichengshi anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT yepengyao anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT pengjia anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT wenzhongshi extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT chengzhuotong extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT anshuzhang extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT binwang extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT zhichengshi extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT yepengyao extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina AT pengjia extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina |
_version_ |
1724316546038235136 |