An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China

Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1...

Full description

Bibliographic Details
Main Authors: Wenzhong Shi, Chengzhuo Tong, Anshu Zhang, Bin Wang, Zhicheng Shi, Yepeng Yao, Peng Jia
Format: Article
Language:English
Published: Nature Publishing Group 2021-01-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-021-01677-2
id doaj-ad2ac98641494ad49b5bb3bf054219d6
record_format Article
spelling doaj-ad2ac98641494ad49b5bb3bf054219d62021-01-31T16:16:18ZengNature Publishing GroupCommunications Biology2399-36422021-01-014111010.1038/s42003-021-01677-2An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in ChinaWenzhong Shi0Chengzhuo Tong1Anshu Zhang2Bin Wang3Zhicheng Shi4Yepeng Yao5Peng Jia6Smart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversityCollege of Oceanography and Space Informatics, China University of PetroleumResearch Institute for Smart Cities, School of Architecture and Urban Planning, Shenzhen UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversitySmart Cities Research Institute, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic UniversityWenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1–2 days and decreased onset risk by up to 21%.https://doi.org/10.1038/s42003-021-01677-2
collection DOAJ
language English
format Article
sources DOAJ
author Wenzhong Shi
Chengzhuo Tong
Anshu Zhang
Bin Wang
Zhicheng Shi
Yepeng Yao
Peng Jia
spellingShingle Wenzhong Shi
Chengzhuo Tong
Anshu Zhang
Bin Wang
Zhicheng Shi
Yepeng Yao
Peng Jia
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
Communications Biology
author_facet Wenzhong Shi
Chengzhuo Tong
Anshu Zhang
Bin Wang
Zhicheng Shi
Yepeng Yao
Peng Jia
author_sort Wenzhong Shi
title An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
title_short An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
title_full An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
title_fullStr An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
title_full_unstemmed An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
title_sort extended weight kernel density estimation model forecasts covid-19 onset risk and identifies spatiotemporal variations of lockdown effects in china
publisher Nature Publishing Group
series Communications Biology
issn 2399-3642
publishDate 2021-01-01
description Wenzhong Shi et al. propose an extended Weight Kernel Density Estimation model to predict the COVID-19 onset risk, with and without the Wuhan lockdown, and corresponding symptom onset and spatial heterogeneity in 347 Chinese cities. The authors find that the lockdown delayed COVID-19 peak onset by 1–2 days and decreased onset risk by up to 21%.
url https://doi.org/10.1038/s42003-021-01677-2
work_keys_str_mv AT wenzhongshi anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT chengzhuotong anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT anshuzhang anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT binwang anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT zhichengshi anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT yepengyao anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT pengjia anextendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT wenzhongshi extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT chengzhuotong extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT anshuzhang extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT binwang extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT zhichengshi extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT yepengyao extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
AT pengjia extendedweightkerneldensityestimationmodelforecastscovid19onsetriskandidentifiesspatiotemporalvariationsoflockdowneffectsinchina
_version_ 1724316546038235136