Generalized periodic rings
Let R be a ring, and let N and C denote the set of nilpotents and the center of R, respectively. R is called generalized periodic if for every x∈R\(N⋃C), there exist distinct positive integers m, n of opposite parity such that xn−xm∈N⋂C. We prove that a generalized periodic ring always has the set N...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1996-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171296000130 |