A note on constacyclic and skew constacyclic codes over the ring $\mathbb{Z}_{p} [u,v]/\langle u^2-u,v^2-v,uv-vu\rangle$
For odd prime $p$, this paper studies $(1+(p-2)u)$-constacyclic codes over the ring $R= \mathbb{Z}_{p} [u,v]/\langle u^2-u,v^2-v,uv-vu\rangle$. We show that the Gray images of $(1+(p-2)u)$-constacyclic codes over $R$ are cyclic and permutation equivalent to a quasi cyclic code over $\mathbb{Z}_{p}$....
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Yildiz Technical University
2019-09-01
|
Series: | Journal of Algebra Combinatorics Discrete Structures and Applications |
Online Access: | http://jm.jacodesmath.com/index.php/jacodesmath/article/view/233 |