Monolithic Integration of Surface Plasmon Detector and Metal–Oxide–Semiconductor Field-Effect Transistors
The monolithic integration of a silicon-based plasmonic detector with metal- oxide-semiconductor field-effect transistors (MOSFETs) was demonstrated. The plasmonic detector consisted of a gold film with a nanoslit grating on a silicon substrate and was operated at a free-space wavelength of 1550 nm....
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2013-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/6557472/ |
Summary: | The monolithic integration of a silicon-based plasmonic detector with metal- oxide-semiconductor field-effect transistors (MOSFETs) was demonstrated. The plasmonic detector consisted of a gold film with a nanoslit grating on a silicon substrate and was operated at a free-space wavelength of 1550 nm. The structure of the nanoslit grating was optimized by using the finite-difference time-domain method. The output current from the plasmonic detector was amplified by ~14 000 times using the monolithically integrated MOSFETs. In addition, dynamic operation of the integrated circuit was demonstrated by modulation of the intensity of a beam that was incident to the plasmonic detector. |
---|---|
ISSN: | 1943-0655 |