A Feature Extraction Method Based on Sparse Filtering With Local Structure Preserved and Its Applications to Bearing Fault Diagnosis
Unsupervised feature learning, as a promising tool for extracting features automatically, overcomes shortcomings of traditional feature extraction methods which generally take plenty of effort on designing features. Among various unsupervised feature learning methods, sparse filtering is an efficien...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8890913/ |