Prediction of City-Scale Dynamic Taxi Origin-Destination Flows Using a Hybrid Deep Neural Network Combined With Travel Time
Predicting city-scale taxi origin-destination (OD) flows takes an important role in understanding passengers' travel demands as well as managing taxi operation and scheduling. But the complex spatial dependencies and temporal dynamics make this problem challenging. In this paper, a hybrid deep...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8826268/ |