Temporal Graph Traversals Using Reinforcement Learning With Proximal Policy Optimization
Graphs in real-world applications are dynamic both in terms of structures and inputs. Information discovery in such networks, which present dense and deeply connected patterns locally and sparsity globally can be time consuming and computationally costly. In this paper we address the shortest path q...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9055369/ |