Drifted Twitter Spam Classification Using Multiscale Detection Test on K-L Divergence
Twitter spam classification is a tough challenge for social media platforms and cyber security companies. Twitter spam with illegal links may evolve over time in order to deceive filtering models, causing disastrous loss to both users and the whole network. We define this distributional evolution as...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8781937/ |