Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology
Selective targeting of drugs to tumor cells is a key goal in oncology. Here, we performed an in vivo phage display to identify peptides that specifically target xenografted prostate cancer cells. This yielded three peptide candidates, LN1 (C-TGTPARQ-C), LN2 (C-KNSMFAT-C), and LN3 (C-TNKHSPK-C); each...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-03-01
|
Series: | Molecular Therapy: Oncolytics |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2372770519300014 |
id |
doaj-a38b1c0f4d234f11a0fbce5563954994 |
---|---|
record_format |
Article |
spelling |
doaj-a38b1c0f4d234f11a0fbce55639549942020-11-25T01:00:56ZengElsevierMolecular Therapy: Oncolytics2372-77052019-03-0112138146Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display TechnologyAkinori Wada0Tomoya Terashima1Susumu Kageyama2Tetsuya Yoshida3Mitsuhiro Narita4Akihiro Kawauchi5Hideto Kojima6Department of Urology, Shiga University of Medical Science, Shiga, Japan; Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, JapanDepartment of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan; Corresponding author: Tomoya Terashima, Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.Department of Urology, Shiga University of Medical Science, Shiga, JapanDepartment of Urology, Shiga University of Medical Science, Shiga, JapanDepartment of Urology, Shiga University of Medical Science, Shiga, JapanDepartment of Urology, Shiga University of Medical Science, Shiga, JapanDepartment of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, JapanSelective targeting of drugs to tumor cells is a key goal in oncology. Here, we performed an in vivo phage display to identify peptides that specifically target xenografted prostate cancer cells. This yielded three peptide candidates, LN1 (C-TGTPARQ-C), LN2 (C-KNSMFAT-C), and LN3 (C-TNKHSPK-C); each of these peptides was synthesized and evaluated for binding and biological activity. LN1 showed the highest avidity for LNCaP prostate cancer cells in vitro and was thus administered to tumor-bearing mice to evaluate in vivo binding. Strikingly, LN1 specifically bound to the tumor tissue and exhibited very low reactivity with normal liver and kidney tissues. To demonstrate that LN1 could specifically deliver drugs to prostate cancer tissue, a therapeutic peptide, LN1-KLA (C-TGTPARQ-C-GGG-D[KLAKLAK]2), was prepared and used to treat LNCaP cells in vitro and was also administered to tumor-bearing mice. The therapeutic peptide significantly suppressed growth of the cells both in vitro and in vivo. Our study shows that a selective homing peptide strategy could facilitate cell-specific targeting of therapeutics while avoiding adverse reactions in normal tissues. Keywords: drug delivery system, homing peptide, negative selection, phage display, prostate cancer, targetinghttp://www.sciencedirect.com/science/article/pii/S2372770519300014 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Akinori Wada Tomoya Terashima Susumu Kageyama Tetsuya Yoshida Mitsuhiro Narita Akihiro Kawauchi Hideto Kojima |
spellingShingle |
Akinori Wada Tomoya Terashima Susumu Kageyama Tetsuya Yoshida Mitsuhiro Narita Akihiro Kawauchi Hideto Kojima Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology Molecular Therapy: Oncolytics |
author_facet |
Akinori Wada Tomoya Terashima Susumu Kageyama Tetsuya Yoshida Mitsuhiro Narita Akihiro Kawauchi Hideto Kojima |
author_sort |
Akinori Wada |
title |
Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology |
title_short |
Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology |
title_full |
Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology |
title_fullStr |
Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology |
title_full_unstemmed |
Efficient Prostate Cancer Therapy with Tissue-Specific Homing Peptides Identified by Advanced Phage Display Technology |
title_sort |
efficient prostate cancer therapy with tissue-specific homing peptides identified by advanced phage display technology |
publisher |
Elsevier |
series |
Molecular Therapy: Oncolytics |
issn |
2372-7705 |
publishDate |
2019-03-01 |
description |
Selective targeting of drugs to tumor cells is a key goal in oncology. Here, we performed an in vivo phage display to identify peptides that specifically target xenografted prostate cancer cells. This yielded three peptide candidates, LN1 (C-TGTPARQ-C), LN2 (C-KNSMFAT-C), and LN3 (C-TNKHSPK-C); each of these peptides was synthesized and evaluated for binding and biological activity. LN1 showed the highest avidity for LNCaP prostate cancer cells in vitro and was thus administered to tumor-bearing mice to evaluate in vivo binding. Strikingly, LN1 specifically bound to the tumor tissue and exhibited very low reactivity with normal liver and kidney tissues. To demonstrate that LN1 could specifically deliver drugs to prostate cancer tissue, a therapeutic peptide, LN1-KLA (C-TGTPARQ-C-GGG-D[KLAKLAK]2), was prepared and used to treat LNCaP cells in vitro and was also administered to tumor-bearing mice. The therapeutic peptide significantly suppressed growth of the cells both in vitro and in vivo. Our study shows that a selective homing peptide strategy could facilitate cell-specific targeting of therapeutics while avoiding adverse reactions in normal tissues. Keywords: drug delivery system, homing peptide, negative selection, phage display, prostate cancer, targeting |
url |
http://www.sciencedirect.com/science/article/pii/S2372770519300014 |
work_keys_str_mv |
AT akinoriwada efficientprostatecancertherapywithtissuespecifichomingpeptidesidentifiedbyadvancedphagedisplaytechnology AT tomoyaterashima efficientprostatecancertherapywithtissuespecifichomingpeptidesidentifiedbyadvancedphagedisplaytechnology AT susumukageyama efficientprostatecancertherapywithtissuespecifichomingpeptidesidentifiedbyadvancedphagedisplaytechnology AT tetsuyayoshida efficientprostatecancertherapywithtissuespecifichomingpeptidesidentifiedbyadvancedphagedisplaytechnology AT mitsuhironarita efficientprostatecancertherapywithtissuespecifichomingpeptidesidentifiedbyadvancedphagedisplaytechnology AT akihirokawauchi efficientprostatecancertherapywithtissuespecifichomingpeptidesidentifiedbyadvancedphagedisplaytechnology AT hidetokojima efficientprostatecancertherapywithtissuespecifichomingpeptidesidentifiedbyadvancedphagedisplaytechnology |
_version_ |
1725211905221459968 |